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Abstract 

We consider dilaton gravity theories in four spacetime dimensions parametrised by a 

constant a, which controls the dilaton coupling, and construct new exact solutions. We 

first generalise the C-metric of Einstein-Maxwell theory (a = 0) to solutions corresponding 

to oppositely charged dilaton black holes undergoing uniform acceleration for general a. 

We next develop a solution generating technique which allows us to “embed” the dilaton 

C-metrics in magnetic dilaton Melvin backgrounds, thus gencralising the Ernst metric 

of Einstein-Maxwell theory. By adjusting the parameters appropriately, it is possible to 

eliminate the nodal singularities of the dilaton C-metrics. For a < 1 (but not for a 2 l), 

it is possible to further restrict the parameters so that the dilaton Ernst solutions have 

a smooth euclidean section with topology S2 x S2 - {pt}, corresponding to instantons 
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describing the pair production of dilaton black holes in a magnetic field. A different 

restriction on the parameters leads to smooth instantons for all values of a with topology 

s2 x IR2. 

1. Introduction 

The idea that the topology of space might change in a quantum theory of gravity is an 

old one [I]. The “canonical” approach to quantum gravity, however, rules out the possi- 

bility from the start by taking the configuration space to be the space of three-geometries 

cm a fixed three-manifold and the “covariant” approach assumes a fixed background space- 

time. Thus, the most natural framework for quantum gravity in which to investigate 

topology changing processes seems to be the sum-over-histories. In the sum-over-histories 

formulation a topology changing transition amplitude is given by a functional integral over 

four-metrics on four-manifolds (cobocdisms) with boundaries which agree with the initial 

and final states. What conditions to place on the metrics summed over is a matter for 

some debate. One approach is to only sum over euclidean metrics [2]. Another proposal is 

to sum over almost everywhere locentzian metrics, restricting the metrics to be causality 

preserving (i.e. no closed time-like curves), in which case the issue of the necessary singu- 

larities must be broached [3]. Although such functional integrals are ill-defined as yet, one 

can still do calculations by assuming that they can be well approximated by saddle point 

methods. An instanton, a euclidean solution that interpolates between the initial and final 

states of a classically forbidden transition, is a saddle point for both the “euclidean” and 

“lorentzian” functional integrals. We take the existence of an instanton as an indication 

that the transition has a finite rate and must be taken into consideration. 

One such instanton in Einstein-Maxwell theory is the euclideanised Ernst metric [4] 

which is interpreted as describing the pair production of two magnetically charged Reissner- 

Nordstrom black holes in a Melvin magnetic universe [5,G]. This is the gravitational ana- 

logue of the Schwingec pair production of charged particles in a uniform electromagnetic 

field. In this process the topology of space changes from JR3 to S2 x S’ - {pt} correspond- 

ing to the formation of two oppositely charged black holes whose throats are connected 

by a handle. The calculation of the rate of this process leads to the observation that it is 

enhanced over the production rate of monopoles by a factor eSbh where Sbh is the Hawking- 

Bekenstein entropy of the black holes 171. This supports the notion that the entropy counts 

the number of “internal” states of the black hole. 



Ace similar processes described by instantons in other theories containing gravity? It 

is known, for example, that both the the low energy limit of string theory [8,9] and 5- 

dimensional Kaluza-Klein theory [lO,ll,lZ] admit a family of charged black hole solutions. 

One may ask if instantons exist which describe their pair production. An action which 

includes all the above mentioned theories describes the interaction between a dilaton, a 

U( 1) gauge field and gravity and is given by 

s = 
s 

d4q/q [R - 2(04)2 - ,-2a4fq (1.1) 

For a = 0 this is just standard Einstein-Maxwell theory. For a = 1 it is a part of the 

action describing the low-energy dynamics of string theory, while for a = fi it arises 

from 5-dimensional Kaluza-Klein theory. For each value of a, there exists a two parameter 

family of black hole solutions (which we shall briefly review in section 2) labelled by the 

mass m and the magnetic (or electric) charge q. That topology changing instantons for 

(1.1) exist, at least for a < 1, describing the pair creation of such black holes, will be one 

of the results of this paper. 

It is important to note that we have used the “Einstein” metric to describe these 

theories. Metrics resealed by a dilaton dependent factor ace also of physical interest and 

may have different causal structures. For example, in string theory (a = 1) the “sigma- 

model” metric ga = e2b 9 is the metric that couples to the string degrees of freedom. If 

we consider the magnetically charged black holes in this theory, then for m > fiq both 

the Einstein metric and the sigma model metric have a singularity cloaked by an event 

horizon. However, in the extremal limit, m = Jib, the Einstein metric has a naked 

singularity, whereas in the sigma model metric the singularity disappears from the space- 

time, down an infinitely long tube. In this limit the sigma model metric is geodesically 

complete and moreover the upper bound on the curvature can be made as small as one 

likes by choosing q large enough. 

These properties of the sigma model metric ace pact of the motivation for using the 

a = 1 theory to further understand the issue of information loss in the scattering of 

matter with extcemal black holes. The low-energy scattering of particles with such an 

extremal black hole, including the effects of back reaction on the metric, has been studied in 

[13,14,15]. One truncates to the s-wave sector of the theory and considers an effective two- 

dimensional theory defined in the throat region. Using semi-classical techniques, it has been 

argued that there may exist an infinite number of near degenerate states corresponding 



to massless modes propagating down the throat. It was conjectured in [15] that these 

remnants or “cornucopions” ace the end-points of Hawking evaporation. The infinite length 

of the throat allows for an arbitrarily large number of remnants, which can then store an 

arbitrarily large amount of information. 

One objection to this scenario is that if an infinite number of such remnants exist, 

then we may expect them to each have a finite probability of being pair created. The 

infinite number of species would then lead to divergences in ordinary quantum field theory 

processes. A way around this objection was proposed in (161, where the rate of production 

of these remnants in a magnetic field was estimated using instanton methods. It was argued 

that the rate of pair production is not infinite, because the instanton would produce a pair 

of throats connected by a finite length handle. The finite length of the throat would then 

imply that only a finite number of remnants could be excited and that the total production 

rate would be finite. A shortcoming of the arguments in [lG], however, was that no exact 

instanton solutions were constructed. Looking for such exact solutions was one of the 

motivations for the present work. 

The plan of the rest of the paper is as follows. In section 2 we present the dilaton gen- 

eralisations of the C-metric for arbitrary dilaton coupling a. These describe two oppositely 

charged dilaton black holes accelerating away from each other. We show that, just as in the 

Einstein-Maxwell C-metric, there exist nodal singularities in the metric which cannot be 

removed by any choice of period for the azimuthal coordinate. These can be thought of as 

providing the forces necessary to accelerate the black holes. In Einstein-Maxwell theory, 

string theory and Kaluza-Klein theory there ace known transformations which generate 

new solutions starting from a known static, axisymmetcic solution. In section 3, we show 

that such generating transformations exist for all a, and take flat space into dilaton mag- 

netic Melvin universes. When applied to the C-metrics, these same transformations give 

dilaton generalisations of the Ernst solution; choosing the parameters appropriately, the 

magnetic field can provide exactly the right amount of acceleration to remove the nodal 

singularities. In section 4, we discuss the euclidean section of the dilaton Ernst solutions. 

To obtain a regular geometry. it is necessary that the Hawking temperatures of the black 

hole and acceleration horizons be equal. For a < 1, we find that it is possible to do this 

at non-zero temperature, and one obtains natural genecalisations of the 4 = m instantons 

discussed in [5,6] with topology S2 x S2 - {pt}. These instantons describe the formation of 

a Wheeler wormhole on a spatial slice of a magnetic dilaton Melvin universe. For all values 

of a, it is possible to obtain a smooth euclidean section in the limit that the two horizons 



have zero temperature. These instantons have topology 5’ x IR2. The physical intecpce- 

tation of these instantons, however, is unclear. Section 5 is a summary and discussion of 

our results. 

2. Dilaton C-metrics 

2.1. Charged Black Holes in Dilaton Gravity 

The equations of motion coming from the action (1.1) ace given by 

V,(~T~~“F““) = 0 

V2c$ + ;e-‘“4F’ = 0 
(2.1) 

R,, = 2V,4V,$ + 2e-2”4F,,F,P - 1 -2u4~2 2S*ve 

These equations ace invariant with respect to an electric-magnetic duality transformation, 

under which the metric is unchanged and the new field strength 2 and dilaton 4 are given 

by 
F = le-2a4e 

P’v 2 FP” PUP0 t fj=-4. (2.2) 

We will only consider the magnetically charged solutions below, but because of this duality 

our results also apply to the electric case. 

For given a the equations of motion (2.1) admit a two parameter family of magnetically 

charged black hole solutions given by 1 [8][9] 

ds2 = -X2dt2 + X-‘dr’ + R2(d%2 + sin’ %d$) 

A, = qcos% (2.3) 

Assuming r+ > T-, then T+ is the location of a black hole horizon. For a = 0, r- is the 

location of the inner Cauchy horizon, however for a > 0 the surface T = T- is singular. 

The parameters r+ and r- ace related to the ADM mass m and total charge 9 by 

1 -a2 r- m=?+ - ( > T+T- 

( > 

i 

1+a2 2’ q= iqi (2.4) 

’ To obtain solutions where the dilaton asymptotically approaches an arbitrary constant +a, 
one can use the fact that the action is invariant under 4 -+ 4 + $0, F + enmOF and the metric 
left unchanged. We will suppress 40 in the following. 



The extremal limit occurs when T+ = T-. 

Following [S] we introduce the “total metric”, da&, defined via a conformal resealing 

of the “Einstein” metric 

ds$ = e2”l”ds2. (2.5) 

For certain values of a this metric naturally appears in Kaluza-Klein theories [S]. For 

a = 1 this is just the sigma model metric that couples to the string degrees of freedom. 

For a < 1, in the extremal limit, the total metric is geodesically complete and the spatial 

sections have the form of two asymptotic regions joined by a wormhole, one region being 

flat, the other having a deficit solid angle. For a = 1 the geometry is that of an infinitely 

long throat. 

2.2. Dilaton C-Metric 

In Einstein-Maxwell theory the C-metric can be interpreted as the spacetime corre- 

sponding to two Reissner-Nordstrom black holes of opposite charge undergoing uniform 

acceleration [17]. The generalisation of this spacetime to dilaton gravity is given by 

1 
ds2 = A’+ - y)2 [F(z) {Gb)dt2 - G-‘(y)&?} + F(y) {G-‘(x)ds2 + G(x)d$}] 

e-2a+ _ F(Y) 
F(x) ’ 

A, = qx, F(E) = (1 + r-A&k 

G(t) = G(c)(l+ r-A@$ G(t) = [l - <‘(I+ r+A<)] 

(2.6) 

Note that the form of G as a product of two terms is quite similar to the form of X in 

(2.3) and further, G is the cubic which appears in the uncharged C-metric in [17]. The 

parameters q, T- and T+ are related as in (2.4). 

The metric (2.6) can be shown to give various known metrics in the appropriate limits. 

Setting r- = 0 gives the uncharged C-metric (a vacuum solution and independent of a). 

Setting a = 0 gives the charged C-metric of Einstein-Maxwell theory, but in a slightly 

non-standard form: the function G is a quartic with a linear term. To compare with the 

form of the C-metric given in (171 one needs to change coordinates to obtain a quartic with 

no linear term. The appropriate transformations are discussed in [17]. 

In the limit of zero acceleration, the metric (2.6) reduces to the metric (2.3) for a 

single charged dilaton black hole. To see this, it is useful to use new coordinates given by 

1 
I‘=---, 

AY 
T = A-‘t. 



In these coordinates the metric (2.6) becomes 

1 
ds2 = (1 + A~z)~ 

[F(x) {-H(r)dT’ + H-‘(r)dr*} 

+ R*(T) {G-‘(x)dx’ + G(.z)dp2}] (2.8) 

ff(r) = (1 - 7 - A2r2)(1 - ;)ti, 

where the function R(r) is the same as that appearing in (2.3). Setting A = 0 and z = co&, 

we return to the metric (2.3) of the dilaton black holes. 

The metric (2.6) has two Killing vectors, $$ and 8. For the range of parameters 

r+A < 2/(3&), the function G:(t) 1 ms three real roots. Denote these in ascending order 

by .$, Es and (4 and define <r E - 5. One can show (3 < & and we further restrict 

the parameters so that <r < (2. The surface y = [r is singular for a > 0, as can be seen 

from the square of the field strength. This surface is analogous to the singular surface (the 

‘would be’ inner horizon) of the dilaton black holes. The surface y = & is the black hole 

horizon and the surface y = [a is the acceleration horizon; they are both Killing horizons 

for 8. 

The coordinates (z, up) in (2.6) are angular coordinates. To keep the signature of 

the metric fixed, the coordinate z is restricted to the range Es < z 5 (4 in which G(z) 

is positive. The norm of the Killing vector & vanishes at z = .& and z = (4, which 

correspond to the poles of spheres surrounding the black holes. The axis z = (3 points 

along the symmetry axis towards spatial infinity. The axis z = (4 points towards the other 

black hole2. Spatial infinity is reached by fixing t and letting both y and 2 approach Es. 

Letting y -+ z for z # <a gives null or timelike infinity [IS]. Since y -+ z is infinity, the 

range of the coordinate y is -co < y < z for a = 0, & < y < 3: for a > 0. 

2.3. Nodal Singularities 

As is the case with the ordinary C-metric, it is not generally possible to choose the 

range of ‘p such that the metric (2.6) is regular at both z = (3 and z = &. In order to see 

this, in a neighbourhood of each root define a new coordinate 0 according to 

O= J = dx’ Ei m’ 
* The coordinates we are using only cover the region of spacetime where one of the black holes 

is. 



The angular part of the metric near one the poles r = [i, i = 3,4 then has the form 

d12 z F(Y) 

A*(& - YY 
d02 + ;X;D’dlp” i 

> 
(2.10) 

where X; = ]G’(<i)] and one can show that X3 < X4. Let t,he range of 1p be 0 < ‘p 2 cy, 

then the deficit angles at the two poles 63, 6, are given by 

63 = 2a - $A3 64 = 2a - +A* (2.11) 

We can remove the nodal singularity at 2 = (4 by choosing a = 4?r/X4, but then there 

is a positive deficit angle running along the (3 direction. This corresponds to the black 

holes being pulled by “cosmic strings” of positive mass per unit length p = 1 - &/X4. 

Alternatively, we can choose a = 4a/X3 to remove the nodal singularity at (3. This means 

there is a negative deficit angle along the &r direction, which can be interpreted as the 

black holes being pushed apart by a “rod” of mass per unit length p = 1 - X4/X3 (which 

is negative). For a general choice of a, there will be nodal singularities on both sides. The 

mass per unit length of the outer singularity will always be greater than that on the inside. 

There is a degenerate case when the metric is free from nodal singularities. Letting 

r+A = 2/(3&) the roots <r and <3 of the cubic G become coincident. In this limit the 

range of z becomes (3 < z 5 (4 since the proper distance between (3 and (4 diverges. The 

point z = (3 disappears from the (z,~p) section which is no longer compact but becomes 

topologically IFt’, the sphere gaining an infinitely long tail. One can eliminate the nodal 

singularity at z = (4 by choosing a = 47r/X4. It might seem that the acceleration and black 

hole horizons become coincident in this limit. This is not the case, however. The proper 

distance between the horizons (at fixed z and t) tends to a constant as r+A -+ 2/(3&). 

This case will be discussed further in section 4. 

3. Generating Dilaton Ernst 

3.1. Generating new solutions 

In the case of vanishing dilaton coupling (a = 0), Ernst [4] has shown that the nodal 

singularities can be removed by including a magnetic field of the proper strength running 

along the symmetry axis. The magnetic field provides the force necessary to accelerate 

the black holes. The magnetic field can be added to the C-metric via an Ehlers-Harrison 

type transformation [19], which takes an axisymmetric solution of the Einstein-Maxwell 



equation into another such solution. The same transformation applied to flat spacetime 

produces Melvin’s magnetic universe [20], which is the closest one can get to a constant 

magnetic field in general relativity. To follow the same path as Ernst, we first need to 

generalise the solution generating technique that he employed to dilaton gravity. 

In the case of K&ma-Klein theory (u = A), this turns out to be quite simple. It 

is known that the charged black holes in Kaluza-Klein theory can be generated from the 

uncharged ones (i.e. Schwarzschild with an extra compact spatial dimension) by applying 

a coordinate transformation mixing the time and internal coordinates, a “boost”, and 

then re-identifying the new internal coordinate [12]. Similarly, we can add magnetic field 

along the symmetry axis of an axisymmetric solution to Kaluza-Klein theory by doing 

a transformation mixing the internal and azimuthal coordinates, a “rotation”. Applied 

to flat space, this transformation reproduces the dilaton Melvin solution given in [S] for 

a = A. Together with the known form of the transformation without the dilaton field, the 

Kaluza-Klein case provides sufficient clues to guess the correct transformation for general 

dilaton coupling. In the string theory case (a = 1) this turns out to be one of the 0(1,2) 

transformations3 that is known to act on the space of axisymmetric solutions [21]. 

Let (g,,“,Ap,q+) be an axisymmetric solution of (2.1). That is, all the fields are in- 

dependent of the azimuthal coordinate ‘p. Let the other three coordinates be denoted by 

{z’}. Suppose also that Ai = 9;~ = 0.4 Then a new solution of (2.1) is given by 

gij = &i-fgij, ’ gvf = A-G%g,,, 

(3.1) 

BA,)* + (’ +qaz)B2g,,~za~ 

The proof is presented in appendix A. 

3 To obtain the full 0(1,2) group one needs to include the antisymmetric tensor field in the 

action (1.1). 
* We can relax this condition and construct new solutions only assuming axisymmetry. How- 

ever, the transformations are somewhat more involved and will not be needed for our purposes. 



3.2. Dilaton Melvin 

Applying these transformations to flat space in cylindrical coordinates we obtain the 

dilaton Melvin solutions given by Gibbons and Maeda [8], 

ds2 = A* [-dt’ + dp2 + dt’] + A-*p2dp2 

e -2e = *$ 
Av=-(l+&3A 

* = 1 + (1 7’ B2p2 

(3.2) 

The parameter B gives the strength of the magnetic field on the axis. 

3.3. Dilaton Ernst 

Applying the transformation (3.1) to the dilaton C-metric finally yields the dilaton 

Ernst solution. 

ds’ = (x - t~)-~A-~hi%= [F(x) {G(W2 - G-‘(y)dy’} + F(y)G-‘(x)dx2] 

+ (X - y)-2A-2A-*F(y)G(x)dp2 

(3.3) 

Defining G(y,z) = A-* G(z) the nodal singularities of the C-metric will be removed if 

&&3 = &ri]~,. In the limit r&A << 1, this constraint yields Newton’s law 

mA x Bq, (3.4) 

where m and q are identified in terms of T+ and r- according to (2.4). 

Note that we can read off the dilaton Melvin metric in accelerated coordinates from 

(3.3) by setting T+ = T- = 0. The metric functions then reduce to 

F = 1, G(x) = 1 - x2, A = 1 + Cl+ a2P2 
4~2(~-~)2(~-~~). (3.5) 

This form of the dilaton Melvin solution is useful for studying in what sense the dilaton 

Ernst solution approaches dilaton Melvin. This is discussed in detail in Appendix B. Here 



we note that, from matching the flux per unit area along the outer axis, the parameters 

B, and B, in (3.2) and (3.3) must be related according to 

Bm=;yI- B,. (3.6) 
= 2-b 

This reproduces the expression given in [7] for a = 0 and in the limit r&A < 1 reduces to 

B, = B,. Further, as discussed in Appendix B, we find coordinates in which the dilaton 

Ernst metric (3.3) approaches the dilaton Melvin metric (3.2) near the outer axis for 

T = & -+ co. One might expect that the two metrics would approach each other at large 

T along any angular direction (except towards the other black hole). Computing F,,,,Fp", 

one finds that in each spacetime this falls off like l/r7 times a function of angle. However, 

it is not clear whether coordinates can be found in which these angular dependences match, 

except near the axis. Further, it seems unlikely that the metrics can be made to match in 

detail. Note that one finds this behavior independent of a and in particular for a = 0. 

4. Dilaton Instantons 

The above solutions describe two dilaton black holes accelerating away from each 

other along the axis of a dilaton Melvin magnetic universe. Euclideanising (3.3) by setting 

r = it, we find that, just as in the a = 0 case, another condition must be imposed on the 

parameters in order to obtain a regular solution. The condition arises in order to eliminate 

conical singularities at both the black hole and acceleration horizons with a single choice 

of the period of 7. This is equivalent to demanding that the Hawking temperatures of the 

two horizons are equal. 

In terms of the metric function G(y) appearing in 

IG’W = IG’(b)l> 

yielding 

(3.3), this constraint becomes 

(4.1) 

t2 - & is 
( > (3 - G (E4 - E2)(53 - (2) = (<4 - E3KE3 - (2). 

Recall that we have restricted our parameters so that E4 > <a 1 52 > cr. For all values of 

a, (4.2) can be solved by demanding that the horizons have zero temperature i.e. (2 = (3. 

We will refer to these as type I instantons. For a < 1, the first factor on the left hand side 

of (4.2) is smaller than one, and there is also a second solution, which we will call type II 



instnntons. For a 2 1, the first factor on the left is greater than one, corresponding to the 

temperature of the black hole horizon always being greater than the temperature of the 

acceleration horizon, and there are no other solutions. 

We first consider the type II solutions with a < 1. These generalise the regular 

euclidean metrics considered in the a = 0 case [5,6,7]; the condition (4.2) is the analogue 

of the 4 = m condition on the parameters discussed in those papers. In the limit r*A << 1, 

for a < 1 one can show that the condition (4.2) leads to T+ = T-. Since we have chosen 

the parameters so that there are no nodal singularities on the t, y and Z, ‘p spheres, it is 

clear that the topology of these spacetimes is S2 x 5’ - {pt} where the removed point is 

z = y = &. 

This instanton is readily interpreted as a bounce: the surface defined by r = 0 and 

r = ?r has topology S2 x S’ - pt, which is that of a wormhole attached to a spatial slice 

of Melvin and is the zero momentum initial data for the lorentzian ernst solution. In 

addition the solu.tion tends to the Melvin solution at euclidean infinity (see appendix B). 

The bounce describes the pair creation of a pair of oppositely charged dilaton black holes 

in a magnetic field which subsequently uniformly accelerate away from each other. From 

the metric we deduce that there is a horizon sitting inside the wormhole throat, located at 

a finite proper distance from the mouth. 

Turning to the type I instantons, we note that this is again the case of two coincident 

roots, which has been discussed above in section 2.3 for B = 0. There it was pointed 

out that there are no nodal singularities even in the absence of a magnetic field, and 

that consequently there is no restriction on the value of B. The apparent coincidence of 

the two horizons is an artifact of a poor choice of coordinates and it can be shown that 

the proper distance between the horizons remains finite as the roots become coincident. 

Below, we exhibit a coordinate change, originally used by Ginsparg and Perry to study 

Schwarzschild-DeSitter instantons (221, which makes this explicit for the C-metrics. 

In (2.6) let r+A = 2/(3&) - c2/fi, so that the limit of coincident roots is e + 0. 

Specifically, introducing yu = -a( 1 + ie2) the roots to order e2 are 

c2,3 = yo r & 

(4 = q1+ LZ). 
2 6 

Writing the dilaton C-metric (2.6) in the coordinates 

2 = cos-l ( -L (Y - Yd) , v% ti = at 

(4.3) 

(4.4) 



and taking the limit E --* 0, then gives 

-F(-h)* sin’Xd$’ + F(-fi)*dX2 

+ F(d) {G-‘(z)dz’ + G(z)dp2} , 1 A, = qx, (4.5) 

e-za+ _ F(-fi) - 
F(x) ’ 

G(x) = - -$(x I- h)‘(x - h/2)(1 +r-AZ)% 

We may then apply the solution generating transformations (3.1) with arbitrary pa- 

rameter B, though we will not do this explicitly here. Euclideanising (4.5) by setting 

Q = i$, we see that it is possible to eliminate the conical singularities at the north and 

south poles of the (@,x) section by making Q periodic with period 27r (1 - &T-A) w. 

Indeed, the (@,x) section is a round sphere and the topology of this solution is Sz x III’, 

in contrast to the type II instantons. It is not clear what, if any, the physical significance 

of these instantons may be. 

5. Discussion 

The instantons presented in section 4 suggest that topology changing processes can 

occur in dilaton gravity for a < 1. Specifically, the type II instantons describe the pair 

creation in a uniform magnetic field of an oppositely charged pair of a < 1 dilaton black 

holes. The rate of production of these black holes can be estimated in the semi-classical 

approximation by calculating the action [23]. 

It is interesting that the type II instantons exist only for a < 1. The interpretation 

of the type I instantons which exist for all a is unclear, especially since they exist for any 

value of the magnetic field. It therefore appears to be difficult to estimate the production 

rate of charged black holes in theories with a 2 1 using semi-classical techniques. 

Including additional matter fields may yield one way of modifying the type II solutions 

to obtain instantons for a > 1. In particular, in [24] it was argued that in the Einstein- 

Maxwell-Higgs theory which admits cosmic strings, euclidean solutions exist which corre- 

spond to a string world sheet wrapped around the horizon of a black hole. The effect of the 

string is to cut out a “wedge” from the (r, t) section of euclidean Schwarzschild, an effect 

which could be approximated in a vacuum theory by allowing a conical singularity at the 

horizon with a specified deficit. Similarly, for a = 1 say, cosmic strings could be added to 



the model (l.l), in which case the type II instanton with a certain conical singularity in 

the (t, y) section could describe the (cosmic string induced) pair creation of a = 1 black 

holes. 

Another interesting possibility is that the physics of black hole pair production for 

a 2 1 is not so simply related to regular euclidean instantons. In reference [25] it was shown 

t,hat the thermodynamic behavior of charged black holes with a > 1 differs from that given 

by the naive interpretation of their euclidean sections. For 0 5 a < 1 the temperature of 

the extcemal black holes goes to zero and Hawking radiation is extinguished, as one would 

expect. For a > 1, however, the temperature of a black hole, given by the periodicity 

of its euclidean section, diverges as extremality is approached, a result that was regarded 

as puzzling 191. This puzzle was partially resolved in [25], where it was shown that, for 

a > 1, the Hawking radiation is in fact shut off by infinite grey body factors. For a = 1 

the temperature of the extcemal black hole approaches a constant and the results of the 

analysis in [25] are inconclusive. In our case, demanding regularity of the euclidean section 

of the dilaton Ernst metric is equivalent to requiring that the black hole be in thermal 

equilibrium with the acceleration radiation. It is tempting to suspect that the inability 

to achieve this (for nonzero temperature) for a > 1 is somehow related to the physics 

uncovered in [25]. The study of black hole pair production with a 2 1 would then require 

more subtle methods. 

In the introduction, we summarised the cornucopian scenario for resolving the para- 

doxes associated with information loss in the scattering of particles from extremal a = 1 

dilaton black holes. In this scenario it is important that the extremal black hole is non- 

singular, with an infinitely long throat leading to a second null infinity. Since the extcemal 

black hole geometries (using the total metric (2.5)) f or a < 1 also have this property, it 

is natural to conjecture that these models all admit cornucopian type scenarios. More- 

over, the instantons we have constructed above indicate that for a < 1 there will be no 

problematic infinite pair production of cornucopions in a magnetic field. Firstly, we ex- 

pect the action of the instanton to be finite. Furthermore, since the created wormholes 

have finite length it is clear that if one included matter fields and calculated the one-loop 

determinant, one would not be including the infinite number of states living far down the 

static wormholes. In conclusion, one would obtain a finite production of cornucopions 

since a cornucopian is not an elementary particle but is deeply interconnected with the 

geometry of spacetime. As we have noted, we cannot say anything definite about the case 



a = 1. It would be interesting to understand the implications of our exact results for the 

approximate instantons presented in [16]. 
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Appendix A. 

Suppose that we have a solution to (2.1) that is axisymmetcic, i.e. independent of the 

azimuthal coordinate ‘p, and further satisfies A; = g+ = 0, where Z* are the other three 

coordinates. We prove that the transformations (3.1) generate a new solution by showing 

that the the transformations leave the action (1.1) invariant. We first rewrite the action 

in terms of the resealed total metric (2.5) to obtain 

S=-~d4x~e-Zm~“[RT+(6~~n2)(~~)2-ez~~F2] (A.l) 

where indices ace raised with the inverse of the total metric. 

Introducing the definitions 

%ij = STij, v = STw 

we can recast the action into the form 

(A.21 

s = --a 
J 

d%&$-+ [3R + 6 ,$’ 8,$&j ; a2 - 1 v-‘~&iv 
a 

1 + a2 
(A.31 

+ -p+a;va’v + 2ee++aiA,~“A,] 



where we have carried out the integration over ‘p assuming its range is 0 5 up 5 ~1. The 

virtue of these definitions is that the transformations (3.1) now take the simple form 

“g$ zz 3gii 

V” = AziqJ 

$=fj (-4.4) 

2 
Ak=-(l+a2)Bh(l+ 2 9 

(l+a2)BA ) 

To complete the proof a straightforward calculation shows that the Lagrangian is invariant 

under these transformations. 

Appendix B. 

B.l. Matching of the magnetic flux 

In this appendix, we show explicitly that the dilaton Ernst solution (3.3) with pa- 

rameter B, matches onto a dilaton Melvin solution with parameter B, near the outer axis 

(i.e. the axis which connects to spatial infinity) at large T = & i.e. we consider the limit 

in which both z and y approach (3. We will start by comparing the magnetic flux per unit 

area on the & axis. This gives us the relation between the parameters B, and B,. The 

magnetic flux through a small area around the axis is given by 

aflux= /da@ = Jdipdxa,A, 

_aA, 
ax 

AcpAx 
2=E3 

The flux per unit area in the limit y + & in dilaton Ernst is then given by 

Aflux I&G B. -- 
Aarea z=E3 = 2 A% z=E8 e 

Whereas in dilaton Melvin one has 
Afhx 
Aarea z=--1 

=B, 

03.2) 

(‘3.3) 

In order that these be the same, we then impose the relation between the parameters B, 

and B, 

B-=;yi B,. (‘3.4) 
= z=& 

This reproduces the expression given in [7] for a = 0 and in the limit T&A < 1 reduces 

to B, = B,. It is the same relation one gets from just matching F,,“Fp” on the axis (see 

below) 



B.2. Matching the metric near the axis 

We now show that the dilaton Ernst metric with parameter B, approaches the dilaton 

Melvin metric with parameter Bm near the outer axis as r -+ c*3. Note tlrat for the 

euclidean section the outer axis, z, y -8 (3, is the only place where r i 00. We start with 

the dilaton Melvin metric expressed in accelerated coordinates, as discussed in section 3.3. 

There is then an acceleration parameter A at our disposal in the matching. Near the axis 

G(z) N X3(z - <a), where X3 = &GJz=~3. Make the following coordinate transformation 

in the dilaton Ernst metric (3.3) 

t = +A& g=-Y 
(3 ’ 

cp= J+3cp 

2h(G)* ’ 
p= (‘“,“))‘. (B.5) 

Near the axis the dilaton Ernst metric then has the form 

d&nst = 
-%F(h)‘%d* 

X3(1 + fj2)A2[; 
2(g + l)dp _ G2 

2(1f V) 
+ p2dq2 + d/T? 1 034 

We can make a similar coordinate transformation on the accelerated form of the dilaton 

Melvin metric near the axis to get 

d&elvin N 
1 

P@(l + Q)2 
2(a + l)dp - 

dg2 

20 + ii) 
+ p2dp2 $ dp2 1 (B.7) 

These two are the same if we identify the acceleration of the Melvin coordinate system A 

according to 
1 

2 F(S3V(53)* 2 = -z‘i2&& 
VW 

Since the choice of A is just a choice of coordinates, this shows that the two metrics are 

the same near the axis. 

We note that in the preceding calculation, we took the limit z, y - E3 in the manner 

z-t3-+0, ?I - c3 N (x --E3)Q? Y<i (B.9) 

which lets r2G(z) + 0 on the axis. Choosing q > i gives an artificially singular slicing of 

the spacetime. Taking the limit for y = i shifts the constant A(&). 



8.3. Comparison of F,,,F’“” 

Here we compare the magnetic field strength at large r, for general values of the angle 

z. On the axis, one finds that the asymptotic values are just the square of (B.2) and (B.3) 

in the two spacetimes, as one would require for consistency. 

For values of z not on the axis, as T + co 

&A &(GF) 
T 

-+ -2AT6i,z + (GF) 3% = z, Y (B.10) 

Then, one finds as y -+ z 

6 1 
FW’Fr = - B6(; ;Taf)4T7 F(x)5G(x)3 

(l+ ;B(l + a’)y~)~8,(GF) - ;yB(l + a2)(1 + ;B(l + n’)yz)GF] 
(B.ll) 

This is to be compared to the field strength squared in dilaton Melvin, which one finds to 

be, as 3/ + ?, 

F,,Fc = - - 
8.26A a& 

~71 + a2)4~7 T 
(B.12) 

These expressions are similiar, in that the rate of fall off with T is the same. However, for the 

two spacetimes to approach each other, one would have to find a coordinate transformation 

such that the metrics and their derivatives match in detail. It appears to us that this cannot 

be done, within the class of transformations which relate z and y to 3 and g. The difficulty 

encountered remains even for the Ernst and Melvin metrics with no dilaton. 
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